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SUMMARY 

A method for the accurate calculation of statistical moments, excess and skew is 
described. Based on peak width, asymmetry and peak height measurements this 
method is applicable to both fully resolved and overlapping chromatographic peaks. It 
is also useful for the deconvolution of overlapping chromatographic peaks. The 
advantages of this method over the traditional approach to measuring peak statistical 
moments, excess and skew are discussed. 

INTRODUCTION 

The importance of statistical moment analysis to the chromatographer cannot 
be overemphasized because a large amount of information can be derived from such an 
analysis. Statistical moment analysis cannot only be used to measure directly 
parameters such as area (zeroth moment), peak centroid (first statistical moment) and 
variance (second statistical moment), but other important parameters can be 
calculated indirectly as well. For example, column efficiency can be calculated from 
N = i#/M2, where N is the column efficiency, Mr is the first statistical moment and 
M2 is the variance. Other parameters, such as the third and fourth statistical moments 
give information on peak asymmetry and peak flattening, respectively. Peak skew and 
excess are parameters related to statistical moments and provide a measure of the 
deviation of the chromatographic peak from a Gaussian peak profile. 

Traditionally, statistical moments for digitally represented chromatographic 
peaks have been approximated by the simple summation of the magnitude of the peak 
signal at each data point between the peak start and stop limits, as shown in Fig. la. 
However, any approach based on summation for the calculation of statistical moments 
has several shortcomings when applied to real chromatographic data. 

First, it has been shown that the accuracy and precision of the summation 
method is directly affected by the amount of noise present in the chromatogram’92. 
The noise level has been shown to affect peak start/stop assignments, and this affects 
the limits of summation and, consequently, the value of the statistical moments 
calculated3. 

* Presented in part at the Pittsburgh Conference and Exposition in New Orleans, LA, February 1988, 
paper No. 088. 
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Fig. I. Equations used for calculation of statistical moments and other peak parameters by (a) the 
summation method and by (b) the width-asymmetry method. r, = retention time. h(t) = chromatographic 
peak profile. 

Secondly, the accuracy of the summation method (equations shown in Fig. la) 
deteriorates rapidly as the peaks begin to overlap. We have recently shown4 that errors 
in peak area can exceed 100% when the summation approach (perpendicular drop 
algorithm) is applied to overlapping peaks. As we shall show later in this report, errors 
in the higher moments calculated via the summation method are usually much larger 
under the same circumstances. 

A final drawback of the summation method is that it is computationally 
intensive, requiring numerous calculations (see Fig. la) for every data point in the peak 



MEASUREMENT OF STATISTICAL MOMENTS 151 

of interest. This is particularly true for the higher moments and related parameters. 
Although this problem has been alleviated somewhat by the advances in computer 
technology (faster computations), the summation method remains noticeably time- 
consuming on many commercial chromatographs with microcomputer-based data 
systems. 

Most, if not all, of the problems associated with the measurement of statistical 
moments can be reduced or eliminated if one has an accurate model for the 
chromatographic peaks of interest. A model that has been reported to be accurate for 
most chromatographic peaks5-7 is the Exponentially Modified Gaussian (EMG) 
function, which is the convolution of a Gaussian and an exponential decay function. 
Recently, we introduced” a convenient procedure for determining whether or not the 
use of the EMG model is appropriate. This procedure utilizes empirical equations for 
calculating peak area based on peak width, asymmetry and peak height measurements. 
Once the validity of the EMG model for a given set of peaks has been confirmed, these 
equations can also be used for the accurate measurement of peak areas of overlapping 
chromatographic peaks4. Note that this method relies on the measurement of peak 
width and asymmetry for the less distorted peak of the overlapped pair (the first peak) 
at a point above the valley where distortion from the second peak is low. 

Although some of the problems associated with the traditional measurement of 
statistical moments can be reduced or eliminated via the use of a variety of 
sophisticated, curve-titting/deconvolution procedures, these procedures also have 
numerous drawbacks. First, they are nearly always even more time-consuming than 
the traditional summation approach. In many cases a final summation step is required 
after the preliminary curve-fitting/deconvolution procedures. Secondly, some of the 
procedures require multi-channel detection which is not always available. Thirdly and 
most importantly, for a variety of reasons the curve-titting/deconvolution approaches 
have not yet proven to be sufficiently reliable. For example, with iterative procedures, 
lack of convergence is frequently observed. In general, these and other disadvantages 
have dissuaded most, if not all, commercial manufacturers from implementing the 
curve-titting/deconvolution approaches into their chromatographic data systems. 

The purpose of this paper is to report an alternative to both the traditional and 
least squares/deconvolution methods for the measurement of statistical moments. Our 
present approach utilizes empirical equations (Fig.1 b) similar to those we already 
reported for peak area7, but also includes a very simple deconvolution procedure for 
a pair of overlapping peaks. The derivation of these equations will not be included 
here, as this topic will constitute a separate paper’. For the remainder of this report, we 
will refer to our method of statistical moment measurement as the width-asymmetry 
method. 

EXPERIMENTAL 

Both an Apple Macintosh Plus and an IBM PC-AT were utilized for simulated 
peak generation and other calculations. All programs were written in either Microsoft 
BASIC or TRUE BASIC. 
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EMG peak generation 
All peaks generated were based on the EMG function’ expressed as 

where A is the peak area, ta is the retention time, co is the standard deviation of the 
Gaussian function, z is the time constant of the exponential decay function convoluted 
with the Gaussian function and 2 = (t - t&G - a&. As the r/co ratio increases, 
the peak in question will become more skewed, and as it decreases, the peak 
approaches a Gaussian shape. 

Single chromatographic peaks at r/Go ratios of 0, 0.5, 1, 2, 3 and 4, with co 
a constant at 0.1 min, were generated for this study, using a sampling rate of three 
points per second. As shown in Fig. 2 (r/co = 2), about 30 points per peak measured 
from 10% peak height to 10% peak height were needed for ~2% error. 
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Fig. 2. Effect of the data sampling rate on the measurement of peak width, asymmetry and peak area. 
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Overlapped chromatographic peaks at r/co ratios of 0.5, 1, 2, 3 and 4 were 
generated at resolution values of 0.625, 0.75, 0.875, 1, 1.125, 1.25, 1.375 and 1.5 by 
using the same sampling rate as the single peaks. Resolution was defined as 
dto/4(variance)“Z, where A tG = tG,2 - tG, 1, and variance was defined as a& + r2 for 
an exponentially modified Gaussian peak. The peaks were overlapped by adding two 
individual, simulated peaks of equal area and r/so value. However, the degree of peak 
overlap will be reported here as the percent valley due to the inadequacy of the 
resolution parameter for fully describing tailed overlapped peaks4. Percent valley was 
defined as h,/h, * lOO%, where h, and h, are shown in Fig. 3. 

Real chromatographic peak generation 
Real single and overlapped pairs of peaks were generated on a Series 400 liquid 

chromatograph (Perk&Elmer, Norwalk, CT, U.S.A.), using pyrene as the analyte. 
The mobile phase composition was 75% aqueous acetonitrile at a flow-rate of 1.5 
ml/min. The column used was a Vydac pH-stable Cs column. A Model V4 variable 
wavelength ultraviolet absorption detector (Isco, Lincoln, NB, U.S.A.), set at 330 nm 
was used to detect pyrene. An Omega-2 data system (Perkin-Elmer) utilizing an IBM 
AT computer was used for storage of the chromatograms. 

Overlapped peaks were obtained from precise, rapid duplicate injections of 
a standard solution of pyrene. This single-standard, rapid, duplicate-injection 
approach has many advantages over a two-component standard solution method 
which would require changing conditions to obtain different degrees of overlap. First, 
it allows the degree of peak overlap to be easily controlled by simply varying the length 
of time between injections. Secondly, this method avoids any relative change in the 
molar absorptivities of two analytes in the mixture as mobile-phase conditions are 
changed to obtain different degrees of overlap. Thirdly, it permits a single peak to be 
obtained under the same conditions as the overlapped peaks, thus allowing the 
statistical moments measured by the summation and width-asymmetry methods for 
the isolated peak to be compared with those measured for the overlapped peak pair 
without any concern about changes in the peak shape and/or concentration. Finally, 

time - 

Fig. 3. Measurement of graphic parameters for an overlapping pair of chromatographic peaks. 1, and h, are 
the retention time and peak height of respective peaks, and h, is the height of the valley. Peak width at the 
desired peak height fraction is given by t. - fh. 
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one can be confident that the true area ratio of the overlapped peaks is unity, since 
equal amounts of the same compound are being injected. 

Two pairs of tailed, overlapping peaks with percent valleys of 40 and 67% were 
generated. A single control peak with the same amount of peak tailing as the 
overlapping peaks was also generated. The amount of peak tailing was adjusted by 
adding or removing dead-volume ahead of the column. 

Peak parameter measurement 
The equations given in Fig. la, for determining the zeroth through fourth 

statistical moments by summation, were applied to both simulated and real peaks. For 
the simulated peaks, start/stop assignments (limits of integration) for isolated peaks 
were taken as the point where the peak was determined to be “on baseline”, which 
depended on the “baseline level” being used for the peak. Baseline levels of 1. 10mg and 
3 * 10e3 were used, which corresponded to approximately 0.00 and 0.1% of the peak 
height, respectively. The lower baseline was used as an ideal baseline in order to obtain 
a maximum level of accuracy for purposes of comparison. The ideal baseline was 
chosen to be slightly above zero, since the value of Z in eqn. 1 necessary to give a zero 
baseline would result in an overflow condition. This ideal baseline was used only for 
peaks in which no noise was present, since noise affects peak/start assignments in real 
chromatograms. 

For overlapped peak pairs, the starting point for the first peak and stopping 
point for the second peak were chosen as for isolated peaks. The peak stop for the first 
peak and the peak start for the second peak were taken as the intersection of the 
baseline being used and a perpendicular line, drawn to the minimum of the valley 
between the peaks (see Fig. 3). This method for dealing with overlapped peaks is 
commonly referred to as the perpendicular drop algorithm. 

For the real chromatographic peaks, the baseline level and the start/stop 
assignments were determined by the data system, the perpendicular drop method being 
employed for overlapped peaks. The peak detection algorithms in the data system were 
optimized for the types of real peaks that were generated. 

The widths of the peaks at 10, 25, 50 and 75% relative peak height were 
determined by utilizing a four point least squares tit where four points on each side of 
the peak, symmetric about the particular height, was used and the difference in time 
between the two points (ta - t,,) was taken as the peak width (see Fig. 3). Four points 
were used, since the accuracy of the value obtained for peak width did not increase 
when more points were fit. 

Peak height was obtained by subtracting the baseline value being used from the 
peak maximum obtained via a quadratic least-squares curve tit of the seven highest 
points in the peak. The seven-point group was selected so that the middle point had the 
highest value. The time at which the maximum was calculated from the quadratic tit 
was used as the retention time of the peak. Seven points were used, since this number 
represented a compromise between the optimum number of points for a peak with 
a z/~o ratio of 1 (mildly skewed) and a peak with a z/so ratio of 4 (heavily skewed) for 
the data sampling rate used. This compromise was selected so that the quadratic fit 
could be used for peaks for which the value of z/so was not known, as in real 
chromatograms. The asymmetry of the peak was taken as the value of b/a, where a and 
b were determined as shown in Fig. 3 at the appropriate peak heights. 
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RESULTS AND DISCUSSION 

Simulated peaks without noise 
The values for the area and the variance obtained by the summation and 

width-asymmetry methods for simulated peaks and an ideal baseline are compared in 
Fig. 4 as a function of the percent valley between the peaks. For only slightly tailed 
peaks (r/so = 1, Fig. 4a), it appears that the summation method for peak area and 
variance is fairly accurate for the noiseless peaks used in this study. However, for 
moderately tailed peaks (r/co = 2, Fig. 4b), the area of the second peak and the 
variance of the first peak have become much less accurate relative to the same 
parameters measured by using the width-asymmetry method. This trend continues in 
Fig. 4c for r/co = 4. Thus, the width-asymmetry method can be used to measure 
accurately both the area and variance for the left peak of a highly skewed and 
overlapped pair of peaks, while the same parameters cannot be measured as accurately 
for either peak when the summation method is used. 

Fig. 5 illustrates the same results for peak area and variance as Fig. 4c, but with 
a less ideal baseline. Here, the variance for the first peak, as measured by the 
summation method, is very inaccurate. This is due to a significant portion of the tail of 
the first peak being truncated by the higher baseline, and shows the sensitivity of the 
variance to baseline errors when measured by the summation method. However, the 
variance measured by our width-asymmetry method does not show this sensitivity. 

The errors in the higher moments, skew and excess are compared in Fig. 6 for an 
overlapped pair of highly skewed peaks (r/go = 4) and an ideal baseline. Since an ideal 
baseline was simulated, the moments measured for the right peak by the summation 
method (see Fig. 6a) show a fair accuracy up to a high percent valley for these noiseless 
peaks. However, results this accurate cannot be expected for real chromatographic 
peaks, due to the problems outlined in the introduction for the summation method. As 
expected, the higher moments, skew and excess, measured by the summation method 
for the left peak, show greater sensitivity to the truncation of the peak tail than do the 
area and variance for the left peak, measured by the summation method. 

However, the higher moments, skew and excess measured by the width- 
asymmetry method for the left peak do not show this sensitivity (see Fig. 6b). In fact, 
the accuracy for these parameters, measured by the width-asymmetry method, is much 
better than that obtained by the summation method for the right peak. This shows that 
the width-asymmetry method is better overall for measuring the higher statistical 
moments, excess and skew for at least one peak of an overlapped pair of peaks. 

Table I shows the maximum percent valleys (maximum overlap) for which the 
two methods described here are in error by less than 5%. As seen there, for most of the 
moments calculated by the width-asymmetry method for the left peak, the maximum 
overlap that can be tolerated is higher. However, for the right peak, some of the 
moments calculated by the summation method are more accurate. These results were 
expected, since the tail for the right peak is fully included in the limits of integration. 
Peak overlap of the peaks prevents the tail of the left peak from being included in the 
summation method. This confirms the well-known results that the tail of a skewed 
peak is especially important in calculating the higher moments by the summation 
method. Also, the results show that the degree of distortion in the left peak is low for 
two overlapped EMG peaks. Overall, these results indicate that all the statistical 



I56 M. S. JEANSONNE, J. P. FOLEY 

AREA, L; 75% 

R; 75% 

ao~.‘..,“‘.,““.“...‘.“1 
0 20 40 60 80 100 

% VALLEY 

0.0 . ’ u . . 1 1 . 1 1 

0 20 40 60 60 100 

% VALLEY 

Fig. 4. Comparison of the errors in peak area and variance occurring in the summation and 
width-asymmetry methods as a function of peak overlap (percent valley) for: (a) t/so = 1; (b) r/uo = 2 and 
(c) ~/co = 4. Labels in the plot refer to: (a) the parameter; (b) the peak (first, L, or second, R) for which 
a parameter was obtained and (c) the relative peak height at which the width and asymmetry were measured 
(width-asymmetry only). For example, “M2, L; 75%” refers to the variance measured for the first peak of 
the overlapped pair at 75% of the peak height, while “M2, R” refers to the variance of the second peak 
measured by the summation method. 
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Fig. 5. Comparison of the errors in peak area and variance occurring in the summation and 
width-asymmetry methods as a function of peak overlap for a highly skewed pair of peaks (~/uo = 4) with 
a less than ideal baseline level (0.1%). Conditions as in Fig. 4. 
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Fig. 6. Comparison of the errors in peak parameters other than peak area and variance for overlapped peak 
pairs with r/uo = 4 occurring in: (a) summation method and (b) width-asymmetry method. Conditions as in 
Fig. 4. 
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TABLE I 

MAXIMUM PEAK OVERLAP (PERCENT VALLEYS) THAT CAN BE TOLERATED BY THE 
WIDTH-ASYMMETRY AND SUMMATION METHODS FOR A GIVEN ACCURACY (< 5% 
ERROR) 

Peak Area Mz M3 M4 Skew Excess 

Width-asymmetry First 41 34 16 24 17 15 
method Second 4 17 8 8 8 I 

Summation method/ First 9 <2 <2 <2 <2 <2 
ideal baseline* Second 8 34 5 11 5 2 

Summation method/ First 8 <2 <2 <2 <2 <2 
non-ideal baseline* Second 9 24 9 <2 9 <2 

* Peak start/stop corresponds to points where signal is 5 . 10-s% of maximum. 
l * Peak start/stop correspond to points where signal is 0.1% of maximum. 

moments, including excess and skew can be measured accurately for peaks that are 
moderately overlapped, the more skewed peaks giving the best results. This latter trend 
is due primarily to the percent valley parameter, which tends to underestimate peak 
overlap for symmetrical peaks and to overestimate peak overlap for skewed peaks. 
(However, this measure of peak overlap is no worse than any other parameter, and is 
more practical than most other measures of peak overlap for skewed peaks4.) Of 
course, Figs. 4-6 also show that for those overlapped peaks which are not highly 
skewed the summation method may occasionally give better results. 

Although the summation method appears to be fairly accurate for the higher 
moments of the second peak of a moderately to highly skewed overlapping peak pair, it 
will generally be very inaccurate with real chromatographic data (peaks with noise). In 
modern chromatographic integrators and data systems, much of the tail of even 
a mildly skewed peak is often not included in the summation, due to baseline errors 
occurring when the algorithm used detects a peak stop before the actual end of the 
peak is reached. Many data systems rely on the first derivative, second derivative or 
similar tests to detect peak end with a slope sensitivity setting which depends on the 
degree of noise in the chromatogram lo The slope sensitivity is set at a level higher than . 
what might be expected for the baseline drift. However, this setting may frequently also 
be higher than the slope on the tail of a skewed chromatographic peak. On overlapped 
pairs of peaks, the premature peak end would affect the second peak almost 
exclusively, therefore disallowing the use of the second peak in accurate computation 
by the summation method of the higher statistical moments for that peak, and often of 
the area and the second moment as well. In contrast, the width-asymmetry method is 
relatively unaffected by this type of truncation error’ ‘. Furthermore, in this example, 
the width-asymmetry method, which is applied to the first peak of an overlapped pair, 
would be entirely unaffected by the premature peak stop on the trailing edge of the 
second peak. 

Results for real chromatographic peaks 
Table II shows the results for an isolated, real chromatographic peak, obtained 

under ideal conditions Figh signal-to-noise (S/N) ratios, no overlap, baseline 
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resolution, etc.]. As seen in Table II, the zeroth through fourth statistical moments, 
along with peak excess and skew for the single peak, were found to be similar for the 
width-asymmetry and summation methods. Under less ideal conditions, with a much 
smaller S/N ratio, the summation method would probably give results very different 
from the width-asymmetry method, due to the limitations of the summation method 
mentioned in the Introduction. 

The appropriateness of the EMG model for this real chromatographic peak is 
demonstrated by the agreement obtained for the various peak parameters at different 
relative peak heights. Although the agreement is not exact, the spread in peak 
parameters is small (usually < 5%) compared to the error encountered when using the 
summation method on most real peaks, the latter due to the problems outlined in the 
Introduction. 

The advantage of the width-asymmetry method over the summation method for 
real peaks becomes apparent when overlapping peaks are examined. Table III gives the 
results for the summation and width-asymmetry methods for two pairs of peaks that 
overlap by different amounts. As seen for the 40% valley case, the summation method 
gave relative areas of 39.5% for the left peak and 60.5% for the right peak. Since the 
true relative areas of the peaks are 50%, the error in peak area for each peak is 10.5% 
when using the summation method and perpendicular drop algorithm. In contrast, the 
width-asymmetry method gave relative areas of 50.0% for each peak, i.e., exactly the 
correct result. 

For the more heavily overlapped peak pair (67% valley), the errors associated 
with the summation method increased, whereas the width-asymmetry method again 
gave results very close to the correct result (areas measured for the single peak shown in 
Table II). The relative areas for the left and right peaks, determined by the summation 
method, were in error by 17% for each peak, whereas the relative areas measured by 
the width-asymmetry method were in error by only 1%. The other statistical moments, 
including skew and excess for the left peak, show a large difference between those 
calculated by the width-asymmetry and summation methods. Also, a comparison of 
these parameters measured for the left peak by using the width-asymmetry method to 
those for the single, isolated peak (see Table II) shows that the width-asymmetry 
method gave very good results. 

TABLE II 

COMPARISON OF SUMMATION AND WIDTH-ASYMMETRY METHODS FOR AN ISOLATED 
REAL CHROMATOGRAPHIC PEAK 

Height 
f”/ol 

Peak 
area 
(mV. s) 

Ml M2 M3 M4 Skew EXC.?SS 

Summation Not 5449.6 1.718 0.0424 0.0186 0.0216 2.146 8.974 
method applicable 

Width- 10 5370.0 1.722 0.0410 0.0149 0.0138 1.794 5.191 
asymmetry 25 5530.7 - 0.0440 0.0167 0.0159 1.807 5.242 
method 50 5870.8 1.892 0.0468 0.0184 0.0181 1.817 5.278 

75 5802.7 - 0.0500 0.0205 0.0208 1.828 5.321 
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Modified width-asymmetry method for true peak deconvolution 
In order to determine relative areas, the width-asymmetry method requires 

knowledge of the total area of the two overlapping peaks, as measured by the 
summation method. The total area cannot be calculated by the width-asymmetry 
method, because the distortion of the right peak by the tail of the left peak causes an 
erroneous contribution to the total area. Thus, the width-asymmetry method, as 
employed until now, is not a true peak deconvolution method, since parameters other 
than the peak area are not additive and therefore cannot be determined for the second 
peak by subtraction. However, the width-asymmetry method can be modified and 
used to deconvolve an overlapping pair of peaks as follows: first, the first peak of the 
overlapping pair is calculated point by point via eqn. 1 over an appropriate time 
interval from values of go, z and A that are estimated from peak width, asymmetry and 
peak-height (area only) measurements by using equations described elsewhere’. Next, 
tG is estimated from M1 - r and then adjusted so that the maxima of the calculated 
peak coincides exactly with the maxima of the first peak in the overlapping pair of real 
peaks. Finally, the second peak of the overlapped pair is obtained by subtracting, point 
by point, the calculated values of the first peak from the total chromatographic signal. 

The accuracy of the width-asymmetry deconvolution method is evident from 
Table IV for real chromatographic peaks. As Tables III and IV show, both the original 
width-asymmetry method and the modified width-asymmetry/deconvolution method 
give accurate results for all parameters for the first peak of the overlapped pair. Note, 
however, that the original width-asymmetry method uses values of peak height, width 
and asymmetry obtained directly from the actual chromatogram (at 75% relative peak 
height), whereas the width-asymmetry/deconvolution method uses the same values 
from an artificially constructed peak. 

Fig. 7 illustrates the results of the width-asymmetry deconvolution method, 
applied to the chromatogram of overlapped peaks with the 40% valley (relative to the 
left peak); superimposed on the real chromatogram are the two simulated peaks, 
obtained from the width-asymmetry deconvolution method. As seen, the decon- 
voluted first peak falls directly on the actual first peak of the overlapped pair. This was 
expected, since there is little distortion of the first peak in the overlapped pair from the 
second peak. The distortion of the second peak in the overlapped pair, caused by the 
tail of the first peak, is readily apparent, though, as the difference in both height and 
area of the second peak and its corresponding deconvoluted peak is large. This 
distortion is the reason that the perpendicular drop method underestimates the area of 
the first peak and overestimates the area of the second peak in an overlapped pair of 
peaks. It is also why, as mentioned above and shown here, the width-asymmetry 
method cannot be applied directly to the second peak of an overlapped pair of peaks. 

Computational time 
As stated in the Introduction, one problem with the summation method is that 

every point in the chromatographic peak must be involved in moment calculations. 
However, when the width-asymmetry method is used, most of the points in a peak of 
interest do not have any calculations performed on them. When the two methods were 
timed against each other, the width-asymmetry method was found to be about twice as 
fast for single-peak chromatograms and up to ten times faster for multiple-peak 
chromatograms. 



162 M. S. JEANSONNE. J. P. FOLEY 

400 1 

250’ 
IllI 

- REAL CHROMATOGRAM 

IRVING SIMULATED LEFT PEAK 

--SIMULATED RIGHT PEAK 

s 

5 

a 

g 

z 
100’ 

TIME UIIN) 
Fig. 7. Visual interpretation of the width-asymmetry/deconvolution method. The solid black line indicates 
the real overlapping chromatographic peaks, while the lighter lines show the individual peaks that are 
predicted by the width-asymmetry/deconvolution method. 

TABLE IV 

RESULTS FOR MODIFIED WIDTH-ASYMMETRY/DECONVOLUTION METHOD FOR TWO 
SETS OF OVERLAPPING, REAL PEAKS 

Conditions as in Table III. Values for each parameter were calculated from width-asymmetry equations at 
10,25,50 and 75% relative peak height. The values obtained were then averaged for this table. The spread of 
values for any parameter never exceeded 5% for the left peak and 10% for the right peak. 

40% Valley 
Left peak 
Right peak 

67% Valley 
Left peak 
Right peak 

Peak area Ml 
(mV . s) 

5654.4 1.798 
5598.1 2.197 

5676.4 1.827 
5272.2 2.090 

M2 M3 M4 Skew Excess 

0.0415 0.0147 0.0138 1.738 4.976 
0.0411 0.0150 0.0139 1.804 5.229 

0.0450 0.0168 0.0164 1.755 5.042 
0.0356 0.0120 0.0104 1.780 5.138 
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